Vetor combinação linear em \(R^2\)

De My Solutions
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Álgebra Linear
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Matrizes e vetores e Independência linear
  • DESCRICAO: vetor combinação linear em R2
  • DIFICULDADE: **
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE: vetor combinação linear, coeficientes de uma combinação linear

Considere os vectores \(\pmb{v_1}\)=\(\left[\begin{array}{c}-1\\-2\\\end{array}\right]\),\(\pmb{v_2}\)=\(\left[\begin{array}{c}-3\\4\\\end{array}\right]\) e \(\pmb{v_3}\)=\(\left[\begin{array}{c}5\\0\\\end{array}\right]\) da figura seguinte:

CombLinear1.gif

Determine primeiro os valores dos coeficientes \(a_1\) e \(a_2\) tais que o vector \(\pmb{v_3}\) se escreve como uma combinação linear dos vectores \(\pmb{v_1}\) e \(\pmb{v_2}\), isto é, \(\pmb{v_3}\) = \(a_1 \)\(\pmb{v_1}\) +\( a_2 \) \(\pmb{v_2}\). A soma \(a_1 +a_2\) é igual a : (introduza um número inteiro)


Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt