Transformação de um quadrado

De My Solutions
Revisão em 15h40min de 25 de fevereiro de 2018 por Ist12543 (Discussão | contribs)

Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Calculo diferencial e integral 2
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Equipa Calculo diferencial e integral 2
  • MATERIA PRINCIPAL: Funções de \(R^n\) em \(R^m\): limite e continuidade
  • DESCRICAO:
  • DIFICULDADE: easy
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE:

Considere a transformação do quadrado unitário da esquerda para a figura da direita.

Qua.gif

Indique qual das seguintes funções pode corresponder a essa transformação.

A)\(\pmb{\text{f}}\left(\begin{array}{c}x\\y\\\end{array}\right)=\left(\begin{array}{c}2x\sin(y)\\2x-y\\\end{array}\right)\)

B)\(\pmb{\text{f}}\left(\begin{array}{c}x\\y\\\end{array}\right)=\left(\begin{array}{c}y-2x\\2x-y\\\end{array}\right)\)

C)\(\pmb{\text{f}}\left(\begin{array}{c}x\\y\\\end{array}\right)=\left(\begin{array}{c}2x\sin(y)\\2x-2y\\\end{array}\right)\)

D)\(\pmb{\text{f}}\left(\begin{array}{c}x\\y\\\end{array}\right)=\left(\begin{array}{c}-x^2+xy+y^2\\-2y\sin(x)\\\end{array}\right)\)


Para obter o zip que contém as instâncias deste exercício clique aqui(Qua)

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt