Diferenças entre edições de "Teste de Hipótese para \(\beta 1\)"

De My Solutions
Ir para: navegação, pesquisa
Linha 17: Linha 17:
 
</div>
 
</div>
 
Para testar a relação entre a altura das ondas (\(x\), em metros) e o montante \(Y\) (em milhares de euros) dos estragos causados na orla costeira em dias de forte agitação marítima, foram obtidas observações relativas a \(20\) dias com forte agitação marítima que conduziram a:
 
Para testar a relação entre a altura das ondas (\(x\), em metros) e o montante \(Y\) (em milhares de euros) dos estragos causados na orla costeira em dias de forte agitação marítima, foram obtidas observações relativas a \(20\) dias com forte agitação marítima que conduziram a:
\(\pmb{\sum_{i=1}^{20}x_i}\)\(=\)\(141\) , \(\pmb{\sum_{i=1}^{20}x_i^2}\)\(=\)\(1029\) , \(\pmb{\sum_{i=1}^{20}x_iy_i}\)\(=\)\(2948\) , \(\pmb{\sum_{i=1}^{20}y_i}\)\(=\)\(417\) , \(\pmb{\sum_{i=1}^{20}y_i^2}\)\(=\)\(8709\).
+
\(\pmb{\sum_{i=1}^{20}x_i}\)\(=\)\(141\) , \(\pmb{\sum_{i=1}^{20}x_i^2}\)\(=\)\(1029\) , \(\pmb{\sum_{i=1}^{20}y_i}\)\(=\)\(417\) , \(\pmb{\sum_{i=1}^{20}y_i^2}\)\(=\)\(8709\) , \(\pmb{\sum_{i=1}^{20}x_iy_i}\)\(=\)\(2948\).
  
 
Ao testar a significância do modelo de regressão linear simples de \(Y\) sobre \(x\), recorrendo ao valor p:
 
Ao testar a significância do modelo de regressão linear simples de \(Y\) sobre \(x\), recorrendo ao valor p:

Revisão das 16h06min de 25 de maio de 2017

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Introdução à regressão linear simples
  • DESCRICAO: Regressão linear simples - teste de significância da regressão
  • DIFICULDADE: Easy
  • TEMPO MEDIO DE RESOLUCAO: 10 min
  • TEMPO MAXIMO DE RESOLUCAO: 15 min
  • PALAVRAS CHAVE: Regressão linear simples, teste sobre

Para testar a relação entre a altura das ondas (\(x\), em metros) e o montante \(Y\) (em milhares de euros) dos estragos causados na orla costeira em dias de forte agitação marítima, foram obtidas observações relativas a \(20\) dias com forte agitação marítima que conduziram a: \(\pmb{\sum_{i=1}^{20}x_i}\)\(=\)\(141\) , \(\pmb{\sum_{i=1}^{20}x_i^2}\)\(=\)\(1029\) , \(\pmb{\sum_{i=1}^{20}y_i}\)\(=\)\(417\) , \(\pmb{\sum_{i=1}^{20}y_i^2}\)\(=\)\(8709\) , \(\pmb{\sum_{i=1}^{20}x_iy_i}\)\(=\)\(2948\).

Ao testar a significância do modelo de regressão linear simples de \(Y\) sobre \(x\), recorrendo ao valor p:

A) Rejeita-se 1%, 5% e 10%

B) Rejeita-se para 5% e 10% e não se rejeita para 1%

C) Rejeita-se para 10% e não se rejeita para 1% e 5%

D) Não se rejeita para 1%, 5% e 10%


Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt