Diferenças entre edições de "Superfície paramétrica"

De My Solutions
Ir para: navegação, pesquisa
(Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...")
 
 
(Há 4 revisões intermédias de 2 utilizadores que não estão a ser apresentadas)
Linha 7: Linha 7:
 
*ANO: 1
 
*ANO: 1
 
*LINGUA: pt
 
*LINGUA: pt
*AUTOR: Equipa Calculo diferencial e integral 2
+
*AUTOR: Ana Moura Santos e Miguel Dziergwa
*MATERIA PRINCIPAL:  
+
*MATERIA PRINCIPAL: Funções de \(R^n\) em \(R^m\): limite e continuidade
*DESCRICAO:  
+
*DESCRICAO: Superfície paramétrica
*DIFICULDADE: easy
+
*DIFICULDADE: **
 
*TEMPO MEDIO DE RESOLUCAO: 15 mn
 
*TEMPO MEDIO DE RESOLUCAO: 15 mn
 
*TEMPO MAXIMO DE RESOLUCAO: 30 mn
 
*TEMPO MAXIMO DE RESOLUCAO: 30 mn
*PALAVRAS CHAVE:  
+
*PALAVRAS CHAVE: parametrização de uma superfície, função parametrização
 
</div>
 
</div>
 
</div>
 
</div>
  
Seja \(F\) a função vetorial \(\text{F:D$\subset$}\mathbb{R}^2\text{$\longrightarrow$}\mathbb{R}^3\)\(\text{(u,v)}|\rightarrow(\sin(u)\text{,}\cos(v)\text{,}\cos(u))\) onde \(\text{D=[}-\pi\text{,}\pi\text{]$\times$[}0\text{,}2\pi\text{]}\), que define uma parametrização de uma dada superfície \(S\). Considere as 4 figuras abaixo.
+
Seja \(F\) a função vetorial \(\text{F:D$\subset$}\mathbb{R}^2\text{$\to$}\mathbb{R}^3\),\(F\)\(\left(\begin{array}{c}u\\v\\\end{array}\right)\)=\(\left(\begin{array}{c}\cos(u)\\\sin(u)\\v\\\end{array}\right)\) onde \(\text{D=[}-2\pi\text{,}0\text{]$\times$[}-\pi\text{,}\pi\text{]}\), que define uma parametrização de uma dada superfície \(S\). Considere as 4 figuras abaixo.
 
+
  
 +
[[File:Sup1.gif]]
 +
[[File:Sup2.gif]]
 +
[[File:Sup3.gif]]
 +
[[File:Sup4.gif]]
  
 
Qual poderá corresponder á parametrização da superfície \(S\)?
 
Qual poderá corresponder á parametrização da superfície \(S\)?
  
A)\(1\)
+
A) \(1\)
  
B)\(2\)
+
B) \(2\)
  
C)\(3\)
+
C) \(3\)
  
D)\(4\)
+
D) \(4\)
  
Para obter o zip que contém as instâncias deste exercício clique aqui(paramSuperficie)
+
Para obter o zip que contém as instâncias deste exercício clique aqui[https://drive.tecnico.ulisboa.pt/api/drive/file/1695923671482858/download]
  
 
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt
 
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt

Edição atual desde as 11h13min de 3 de abril de 2018

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Calculo diferencial e integral 2
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Funções de \(R^n\) em \(R^m\): limite e continuidade
  • DESCRICAO: Superfície paramétrica
  • DIFICULDADE: **
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE: parametrização de uma superfície, função parametrização

Seja \(F\) a função vetorial \(\text{F:D$\subset$}\mathbb{R}^2\text{$\to$}\mathbb{R}^3\),\(F\)\(\left(\begin{array}{c}u\\v\\\end{array}\right)\)=\(\left(\begin{array}{c}\cos(u)\\\sin(u)\\v\\\end{array}\right)\) onde \(\text{D=[}-2\pi\text{,}0\text{]$\times$[}-\pi\text{,}\pi\text{]}\), que define uma parametrização de uma dada superfície \(S\). Considere as 4 figuras abaixo.

Sup1.gif Sup2.gif Sup3.gif Sup4.gif

Qual poderá corresponder á parametrização da superfície \(S\)?

A) \(1\)

B) \(2\)

C) \(3\)

D) \(4\)

Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt