Super iô-iô

De My Solutions
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Física
  • DISCIPLINA: Mecânica e ondas
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Mourão
  • MATERIA PRINCIPAL: Torque ou momento de uma Força
  • DESCRICAO: Super Iô-iô
  • DIFICULDADE: ***
  • TEMPO MEDIO DE RESOLUCAO: 1800 [s]
  • TEMPO MAXIMO DE RESOLUCAO: 3600 [s]
  • PALAVRAS CHAVE: Momento, inércia, rotação, corpo, rígido, iô-iô, tensão
Esquema da montagem


Um Super iô-iô, como o representado na figura ao lado, que até lança faíscas vermelhas e verdes, enrola-se e desenrola-se preso em dois fios. O iô-iô tem um disco central, densidade uniforme, com \(M=1\) Kg e raio \(R=10\) cm. O raio do eixo de rotação é \(r=0,25\) cm.

  • Calcule a aceleração do iô-iô e a tensão nos fios quando está a desenrolar. Apresente a expressão para ambas as grandezas, antes de calcular os valores. Considere que o disco tem densidade constante. A corda que desenrola tem \(l=50\) cm de comprimento.

Respostas

  • \( a = -\frac{g}{1+\frac{R^2}{2r^2}} \simeq -0.0122 \) m s\(^{-2}\)
  • \( T = \frac{Mg}{1+\frac{2r^2}{R^2}} \simeq 9.798 \) N
  • Calcule a velocidade máxima atingida pelo iô-iô.

Respostas

\( v_{max} = - \sqrt{\frac{2gl}{1+\frac{R^2}{2r^2}}}\simeq -0.11 \) m s\(^{-1}\)

  • Bónus: Qual a tensão máxima no fio, atingida quando o iô-iô deixa de desenrolar para passar a enrolar? Dicas: Este problema é complexo, por isso recomendam-se algumas aproximações que podem não ser inteiramente verdade numa situação real. Considere que a corda não se move; Considere que o iô-iô rola em torno da extermidade fixa da corda; Intua sobre o ponto da trajectória em que a tensão é máxima; Utilize conservação de energia mecânica para determinar a velocidade de translação do iô-iô nesse ponto.

Respostas

  • \(T_{max} = Mg \Big(1 + \frac{2 (l + r)}{r ( 1 + \frac{R^2}{2 r^2} )} \Big)\)

\( \Rightarrow T_{max} \simeq 14.73\) N

Nota: no caso real o iô-iô não começa necessariamente a enrolar depois de ter desenrolado tudo. Isto acontece porque a corda não está presa directamente ao eixo, mas passa à volta deste, tendo depois um nó que a segura. Além disso, no caso real, o movimento da corda não é, de todo, desprezável.