Quantil numa Distribuição Univariada Contínua

De My Solutions
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Variáveis aleatórias contínuas
  • DESCRICAO: Probabilidades I
  • DIFICULDADE: Easy
  • TEMPO MEDIO DE RESOLUCAO: 10 min
  • TEMPO MAXIMO DE RESOLUCAO: 15 min
  • PALAVRAS CHAVE: variáveis aleatórias contínuas quantil mediana distribuição univariada

O tempo de atendimento num balcão de informações, em minutos, é uma variável aleatória \(X\) com a seguinte função densidade de probabilidade:\(f_X(x)=\)\(\frac{2x}{35}\) com \(1\)\( \leq x \leq \)\(6\) e zero caso contrário. O quantil de probabilidade \(\frac{3}{5}\) da variável aleatória \(X\) é:

A)\(5.29042\),

B)\(4.69042\),

C)\(5.39042\),

D)\(4.09042\)


Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt