Diferenças entre edições de "Propriedades de matrizes elementares 3\( \times\)3"

De My Solutions
Ir para: navegação, pesquisa
(Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...")
 
Linha 7: Linha 7:
 
*ANO: 1
 
*ANO: 1
 
*LINGUA: pt
 
*LINGUA: pt
*AUTOR: Equipa Álgebra Linear
+
*AUTOR: Ana Moura Santos e Miguel Dziergwa
*MATERIA PRINCIPAL:  
+
*MATERIA PRINCIPAL: Matrizes e vetores
*DESCRICAO:  
+
*DESCRICAO: propriedades de matrizes elementares
*DIFICULDADE:  
+
*DIFICULDADE: **
*TEMPO MEDIO DE RESOLUCAO:  
+
*TEMPO MEDIO DE RESOLUCAO: 15 mn
 
*TEMPO MAXIMO DE RESOLUCAO: 30 mn
 
*TEMPO MAXIMO DE RESOLUCAO: 30 mn
*PALAVRAS CHAVE:  
+
*PALAVRAS CHAVE: matrizes elementares, produto de matrizes, matriz transposta, matriz inversa
 
</div>
 
</div>
 
</div>
 
</div>
  
Sejam as matrizes elementares \(E_1 = \)\(\left(\begin{array}{ccc}0&#038;0&#038;1\\0&#038;1&#038;0\\1&#038;0&#038;0\\\end{array}\right)\) e \(E_2=\)\(\left(\begin{array}{ccc}1&#038;0&#038;0\\0&#038;1&#038;0\\0&#038;0&#038;\frac{2}{3}\\\end{array}\right)\). Seleccione todas as afirmações correctas.
+
Sejam as matrizes elementares \(E_1 = \)\(\left(\begin{array}{ccc}0&#038;0&#038;1\\0&#038;1&#038;0\\1&#038;0&#038;0\\\end{array}\right)\) e \(E_2=\)\(\left(\begin{array}{ccc}1&#038;0&#038;0\\0&#038;1&#038;0\\0&#038;0&#038;\frac{2}{3}\\\end{array}\right)\). Selecione todas as afirmações correctas.
  
 
A)\(\left(E_2E_1E_2)^T=E_2E_1E_2\right.\);
 
A)\(\left(E_2E_1E_2)^T=E_2E_1E_2\right.\);

Revisão das 09h41min de 4 de outubro de 2016

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Álgebra Linear
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Matrizes e vetores
  • DESCRICAO: propriedades de matrizes elementares
  • DIFICULDADE: **
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE: matrizes elementares, produto de matrizes, matriz transposta, matriz inversa

Sejam as matrizes elementares \(E_1 = \)\(\left(\begin{array}{ccc}0&0&1\\0&1&0\\1&0&0\\\end{array}\right)\) e \(E_2=\)\(\left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&\frac{2}{3}\\\end{array}\right)\). Selecione todas as afirmações correctas.

A)\(\left(E_2E_1E_2)^T=E_2E_1E_2\right.\);

B)Dada uma matriz \(\text{A}_{\text{3x3}}\) então \(E_1{}^2\text{A}=\text{A}E_1\);

C)\(E_1E_2E_1=E_2{}^{-1}\);

D)\(\left(E_1E_2E_1)^T=E_1E_2E_1\right.\)

E)Nenhuma das anteriores

Para obter o zip que contém as instâncias deste exercício clique aqui(propelem.nb)

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt