Propriedade de invariância dos estimadores de MV - distribuição beta

De My Solutions
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Amostragem e estimação pontual
  • DESCRICAO: Propriedade de invariância dos estimadores de MV - distribuição beta
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 10 min
  • TEMPO MAXIMO DE RESOLUCAO: 15 min
  • PALAVRAS CHAVE: função de verosimilhança, estimativa de máxima verosimilhança, propriedade de invariância, distribuição beta

Admita que a proporção de um ingrediente em determinado produto alimentar é representada pela variável aleatória \(X\) com função de densidade de probabilidade \( f_{X}(x)=\) \(\begin{cases}\theta x^{\theta-1}&0<x<1\\0&\text{caso contrário}\end{cases}\)

onde \( \theta \) é um parâmetro positivo desconhecido. Determine a estimativa de máxima verosimilhança de \( E(X)= \)\(\frac{\theta}{\theta+1}\) baseada na amostra \( ( \)\(0.889\),\(0.688\),\(0.896\),\(0.964\),\(0.707\)\() \) proveniente da população \(X\). Preencha a caixa abaixo com o resultado obtido com, pelo menos, três casas decimais.

Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt