Probabilidade Condicional e Independência

De My Solutions
Ir para: navegação, pesquisa
Metadata
  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Probabilidade Condicional e Independência
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 15 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Numa fábrica existem três máquinas distintas ( \( A \), \(B \) e \( C \)) que produzem \(\textit{chips}\). Estas máquinas são responsáveis pela produção de \( 25\% \), \(35\% \) e \( 40\% \) dos \( \textit{chips} \), respectivamente. Assuma que \( 5\% \) dos \( \textit{chips} \) produzidos pela máquina \( A \) são defeituosos e que as correspondentes percentagens para as máquinas \( B \) e \( C \) são de \( 4\% \) e \( 2\% \), respectivamente.

  1. Sabendo que um \( \textit{chip} \) não é defeituoso, qual é a probabilidade de ter sido produzido pela máquina \( A \) ?
  2. Para um \( \textit{chip} \) seleccionado ao acaso, considere os seguintes eventos: ``\( \textit{chip} \) foi produzido pela máquina \( A \) e ``\( \textit{chip} \) é defeituoso.

Serão estes dois eventos independentes? Justifique.