Diferenças entre edições de "Polinómio característico e diagonalização"

De My Solutions
Ir para: navegação, pesquisa
Linha 17: Linha 17:
 
</div>
 
</div>
  
Seja \(\text{A}_{\text{3$\times$3}}\) com característica igual a \(1\) . Sabendo que o polinómio característico de A é \(\text{p}(\lambda)=\lambda^2(\lambda+1)\) indique todas as afirmações verdadeiras.
+
Seja \(\text{A}_{\text{3$\times$3}}\) com característica igual a \(3\) . Sabendo que o polinómio característico de A é \(\text{p}(\lambda)=(\lambda-1)^2(\lambda+1)\) indique todas as afirmações verdadeiras.
  
 +
A) \(\text{$\lambda$=1}\) tem multiplicidade algébrica 1
  
A) \(\text{$\lambda$=0e$\lambda$=1}\) são os valores próprios de \(\text{A}^2\)
+
B) \(\text{det}\text{A}^3\neq0\)
  
B) \(\text{det}(\text{A}+\text{I})\neq0\)
+
C) \(\text{A}\) é diagonalizável sse \(\text{$\lambda$=1}\) tem multiplicidade geométrica 2
  
C) \(\text{det}(\text{A}-\text{I})=0\);
+
D) \(\text{Nul}(\text{A}-\text{I})\) é trivial
 
+
D) \(\text{det}\, \text{A}=0\);
+
  
 
E) Nenhuma das anteriores.
 
E) Nenhuma das anteriores.
  
  
Para obter o zip que contém as instâncias deste exercício clique aqui[https://drive.tecnico.ulisboa.pt/download/570023764569338/instanciasPolCaracteristico.zip]
+
Para obter o zip que contém as instâncias deste exercício clique aqui[https://drive.tecnico.ulisboa.pt/download/570023764569339/instanciasPolCaracteristico.zip]
  
 
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt
 
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt

Revisão das 10h56min de 12 de dezembro de 2016

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Álgebra Linear
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Determinantes e aplicações, Diagonalização de matrizes
  • DESCRICAO: Polinómio característico e diagonalização
  • DIFICULDADE: ***
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE: polinómio característico, diagonalização, valores próprios, base de vetores próprios, valor próprio zero, espaço nulo (núcleo) trivial, nulidade da matriz, determinante, multiplicidade algébrica e geométrica dos valores próprios

Seja \(\text{A}_{\text{3$\times$3}}\) com característica igual a \(3\) . Sabendo que o polinómio característico de A é \(\text{p}(\lambda)=(\lambda-1)^2(\lambda+1)\) indique todas as afirmações verdadeiras.

A) \(\text{$\lambda$=1}\) tem multiplicidade algébrica 1

B) \(\text{det}\text{A}^3\neq0\)

C) \(\text{A}\) é diagonalizável sse \(\text{$\lambda$=1}\) tem multiplicidade geométrica 2

D) \(\text{Nul}(\text{A}-\text{I})\) é trivial

E) Nenhuma das anteriores.


Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt