# Ortonormalização duma base(Gram-Schmidt)

(dif) ← Revisão anterior | Revisão atual (dif) | Revisão seguinte → (dif)
Ir para: navegação, pesquisa

• CONTEXTO : Primeiro ciclo universitário
• AREA: Matemática
• DISCIPLINA: Álgebra Linear
• ANO: 1
• LINGUA: pt
• AUTOR: Ana Moura Santos e Miguel Dziergwa
• MATERIA PRINCIPAL: Bases ortogonais e ortogonalização de Gram-Schmidt
• DESCRICAO: Ortonormalização duma base (Gram-Schmidt)
• TEMPO MEDIO DE RESOLUCAO: 10 mn
• TEMPO MAXIMO DE RESOLUCAO: 20 mn
• PALAVRAS CHAVE: base de espaço linear, base ortonormal (ortonormada), vetores ortogonais, vetores unitários, norma 1

Considere a seguinte base de $$\mathbb{R}^3$$ $$\left\{\left(\begin{array}{c}-1\\-2\\-1\\\end{array}\right),\left(\begin{array}{c}-1\\1\\2\\\end{array}\right),\left(\begin{array}{c}-1\\-2\\1\\\end{array}\right)\right\}$$. Diga qual dos seguintes conjuntos corresponde à ortonormalização desta base.

A) $$\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\-\sqrt{\frac{2}{3}}\\-\frac{1}{\sqrt{6}}\\\end{array}\right),\left(\begin{array}{c}-\frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}}\\\end{array}\right),\left(\begin{array}{c}\frac{1}{\sqrt{3}}\\-\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\end{array}\right)\right\}$$;

B) $$\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\\frac{1}{\sqrt{6}}\\\sqrt{\frac{2}{3}}\\\end{array}\right),\left(\begin{array}{c}-\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}\\0\\\end{array}\right),\left(\begin{array}{c}\frac{1}{\sqrt{3}}\\-\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\end{array}\right)\right\}$$;

C) $$\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\-\sqrt{\frac{2}{3}}\\\frac{1}{\sqrt{6}}\\\end{array}\right),\left(\begin{array}{c}-\frac{1}{\sqrt{30}}\\-\sqrt{\frac{2}{15}}\\-\sqrt{\frac{5}{6}}\\\end{array}\right),\left(\begin{array}{c}-\frac{2}{\sqrt{5}}\\\frac{1}{\sqrt{5}}\\0\\\end{array}\right)\right\}$$;

D) $$\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\-\sqrt{\frac{2}{3}}\\\frac{1}{\sqrt{6}}\\\end{array}\right),\left(\begin{array}{c}-\sqrt{\frac{5}{42}}\\4\sqrt{\frac{2}{105}}\\\frac{11}{\sqrt{210}}\\\end{array}\right),\left(\begin{array}{c}-\sqrt{\frac{5}{7}}\\\frac{1}{\sqrt{35}}\\-\frac{3}{\sqrt{35}}\\\end{array}\right)\right\}$$.

Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt