Diferenças entre edições de "Ortonormalização duma base(Gram-Schmidt)"

De My Solutions
Ir para: navegação, pesquisa
(Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...")
 
Linha 7: Linha 7:
 
*ANO: 1
 
*ANO: 1
 
*LINGUA: pt
 
*LINGUA: pt
*AUTOR: Equipa Álgebra Linear
+
*AUTOR: Ana Moura Santos e Miguel Dziergwa
 
*MATERIA PRINCIPAL: Produtos internos e normas
 
*MATERIA PRINCIPAL: Produtos internos e normas
*DESCRICAO: Ortogo e norm em subespaço
+
*DESCRICAO: Ortonormalização duma base (Gram-Schmidt)
*DIFICULDADE: easy
+
*DIFICULDADE: **
 
*TEMPO MEDIO DE RESOLUCAO: 10 mn
 
*TEMPO MEDIO DE RESOLUCAO: 10 mn
*TEMPO MAXIMO DE RESOLUCAO: 30 mn
+
*TEMPO MAXIMO DE RESOLUCAO: 20 mn
*PALAVRAS CHAVE:  
+
*PALAVRAS CHAVE: base de espaço linear, base ortonormal (ortonormada), vetores ortogonais, vetores unitários, norma 1
 
</div>
 
</div>
 
</div>
 
</div>

Revisão das 00h11min de 9 de dezembro de 2016

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Álgebra Linear
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Produtos internos e normas
  • DESCRICAO: Ortonormalização duma base (Gram-Schmidt)
  • DIFICULDADE: **
  • TEMPO MEDIO DE RESOLUCAO: 10 mn
  • TEMPO MAXIMO DE RESOLUCAO: 20 mn
  • PALAVRAS CHAVE: base de espaço linear, base ortonormal (ortonormada), vetores ortogonais, vetores unitários, norma 1

Considere a seguinte base de \( \mathbb{R}^3 \) \(\left\{\left(\begin{array}{c}-1\\-2\\-1\\\end{array}\right),\left(\begin{array}{c}-1\\1\\2\\\end{array}\right),\left(\begin{array}{c}-1\\-2\\1\\\end{array}\right)\right\}\). Diga qual dos seguintes conjuntos corresponde á ortonormalização desta base.

A)\(\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\-\sqrt{\frac{2}{3}}\\-\frac{1}{\sqrt{6}}\\\end{array}\right),\left(\begin{array}{c}-\frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}}\\\end{array}\right),\left(\begin{array}{c}\frac{1}{\sqrt{3}}\\-\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\end{array}\right)\right\}\), B)\(\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\\frac{1}{\sqrt{6}}\\\sqrt{\frac{2}{3}}\\\end{array}\right),\left(\begin{array}{c}-\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}\\0\\\end{array}\right),\left(\begin{array}{c}\frac{1}{\sqrt{3}}\\-\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\end{array}\right)\right\}\), C)\(\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\-\sqrt{\frac{2}{3}}\\\frac{1}{\sqrt{6}}\\\end{array}\right),\left(\begin{array}{c}-\frac{1}{\sqrt{30}}\\-\sqrt{\frac{2}{15}}\\-\sqrt{\frac{5}{6}}\\\end{array}\right),\left(\begin{array}{c}-\frac{2}{\sqrt{5}}\\\frac{1}{\sqrt{5}}\\0\\\end{array}\right)\right\}\), D)\(\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\-\sqrt{\frac{2}{3}}\\\frac{1}{\sqrt{6}}\\\end{array}\right),\left(\begin{array}{c}-\sqrt{\frac{5}{42}}\\4\sqrt{\frac{2}{105}}\\\frac{11}{\sqrt{210}}\\\end{array}\right),\left(\begin{array}{c}-\sqrt{\frac{5}{7}}\\\frac{1}{\sqrt{35}}\\-\frac{3}{\sqrt{35}}\\\end{array}\right)\right\}\)


Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt