Montanha Russa com Loop

De My Solutions
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Física
  • DISCIPLINA: Mecânica e ondas
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Mourão
  • MATERIA PRINCIPAL: Dinâmica do Ponto Material
  • DESCRICAO: Loop
  • DIFICULDADE: ***
  • TEMPO MEDIO DE RESOLUCAO: 600 [s]
  • TEMPO MAXIMO DE RESOLUCAO: 1200 [s]
  • PALAVRAS CHAVE: gravidade, forças, contacto, loop, reacção normal

Um carro numa montanha russa, de massa \(m=100\) kg, faz uma manobra de looping com um raio de curvatura \(R=5\) m. Considere \(g=9,\!8\) m.s\(^{-2}\)

  • Represente esquematicamente a trajetória do carro na montanha russa e represente as forças que atuam no carro no ponto mais alto da trajetória (ponto A).

Respostas

  • (falta imagem)
  • Assumindo que o carro consegue chegar ao cimo da montanha russa unicamente devido à velocidade que tem quando inicia a manobra de subida para o looping (não tem qualquer outro mecanismo que o puxe para a parte de cima da montanha russa) calcule a velocidade mínima que o carro deve ter no ponto A para que consiga completar o looping. Justifique a resposta indicando os valores das várias forças que atuam no carro.

Respostas

As condições mínimas para completar o loop são:

  • \(v_c = \sqrt{g\,R} = 7 \, \)m.s\(^{-1}\)
  • \(N \rightarrow 0\)
  • \(P = m\,g = 980 \) N
  • Calcule a velocidade mínima que o carro deve ter no ponto mais baixo da trajetória (ponto B) para completar o looping.

Respostas

\(v_0 = \sqrt{5g\,R} \simeq 15,\!65\, \) m.s\(^{-1}\)

  • Suponha que o carro inicia a manobra com uma velocidade no ponto B que é 5 vezes superior à velocidade mínima nesse ponto para fazer o looping. Determine a velocidade do carro no ponto A e o valor da forças que atuam no carro nesse ponto.

Respostas

  • \(v_A = \sqrt{121g\,R} \simeq 77 \,\)m.s\(^{-1}\)
  • \(P = m\,g = 980\) N
  • \(N = 120\,m\,g = 117 600\,\) N