Método da potência

De My Solutions
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Álgebra Linear
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Métodos numéricos
  • DESCRICAO: Método da potência
  • DIFICULDADE: ***
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 25 mn
  • PALAVRAS CHAVE: matriz tridiagonal, valor próprio dominante, vetor próprio dominante,aproximação inicial, iterações

Considere a matriz 5x5 tridiagonal com entradas \( a_{ii}= \) \(2\), \( i=1,2,...,5 \) ; \( a_{i,i+1} = a_{i+1,i} = \) \(1\) , \( i=1,...,4 \). Sabendo que a aproximação inicial \(\pmb{x_0}\) \(=(0.5,0.8,1,0.8,0.5) \) está quase alinhada com o vetor próprio dominante da matriz, calcule até à quinta iterada o valor próprio dominante com pelo menos 2 casas decimais.

Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt