Invertibilidade numa vizinhança

De My Solutions
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Calculo Diferencial e Integral 2
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Teorema da função inversa
  • DESCRICAO: Invertibilidade na vizinhança de um ponto
  • DIFICULDADE: **
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 20 mn
  • PALAVRAS CHAVE: teorema da função inversa, condições para a invertibilidade

Considere a função vetorial \(f\)\(\left(\begin{array}{c}x\\y\\\end{array}\right)\)=\(\left(\begin{array}{c}-x\sin(y)\\2x^2-2xy-y^2\\\end{array}\right)\). Indique todas as afirmações verdadeiras.

A) \(\text{f}\) é invertível numa vizinhança de \(\text{f}\left(\begin{array}{c}-2\\-2\\\end{array}\right)\).

B) \(\text{f}\) não é invertível numa vizinhança de \(\text{f}\left(\begin{array}{c}-2\\1\\\end{array}\right)\).

C) \(\text{f}\) não é invertível numa vizinhança de \(\text{f}\left(\begin{array}{c}0\\-2\\\end{array}\right)\).

D) \(\text{f}\) é invertível numa vizinhança de \(\text{f}\left(\begin{array}{c}2\\-1\\\end{array}\right)\).

E) Nenhuma das anteriores


Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt