Igualdade das médias com variâncias desconhecidas mas iguais

De My Solutions
Revisão em 14h50min de 14 de maio de 2017 por Ist13114 (Discussão | contribs)

Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Testes de hipóteses
  • DESCRICAO: Teste sobre a igualdade de valores esperados - populações normais, variância desconhecidas mas iguais
  • DIFICULDADE: Easy
  • TEMPO MEDIO DE RESOLUCAO: 10 min
  • TEMPO MAXIMO DE RESOLUCAO: 15 min
  • PALAVRAS CHAVE: testes de hipóteses, igualdade de valores esperados, distribuições normais, valor p

Um fabricante de pneus pretende comparar, através de ensaios piloto, 2 métodos de produção dos pneus, Seleccionados \(10\) e \(7\) pneus produzidos, respetivamente segundo o 1º e 2º métodos, resolve-se testá-los. Os pneus da 1ª amostra foram testados numa zona A, os da 2ª numa zona B, com as durações (em unidades de 100 km). Observou-se que \( { \overline{x}_1}=\)\(61\), \(s_1^2=\)\(\frac{8}{9}\) e \( { \overline{x}_2}=\)\(\frac{419}{7}\), \(s_2^2=\)\(\frac{59}{21}\). Sabe-se que a duração de um pneu , fabricado por qualquer um dos métodos de produção, varia segundo uma distribuição normal. Admita que as variâncias da duração dos dois tipos de pneus são iguais. Teste a hipótese de não haver diferença significativa na duração média dos dois tipos de pneus e decida com base no valor-p.


A)Rejeita-se para 1%, 5% e 10%

B)Rejeita-se para 5% e 10% e não se rejeita para 1%

C)Rejeita-se para 10% e não se rejeita para 1% e 5%

D)Não se rejeita para 1%, 5% e 10%


Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt