Funções que satisfazem a equação de onda

De My Solutions
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Calculo Diferencial e Integral 2
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Derivadas parciais
  • DESCRICAO: Funções que satisfazem a equação de onda
  • DIFICULDADE: **
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 20 mn
  • PALAVRAS CHAVE: funções de classe \(C^2\), equação de onda, derivadas de 2ª ordem

Considere a seguinte equação de onda \(\frac{\partial^2\text{f}}{\partial\text{x}^2}+\frac{\partial^2\text{f}}{\partial\text{y}^2}-\text{k}^2\frac{\partial^2\text{f}}{\partial\text{t}^2}\text{=0}\). Indique quais das funções seguintes, definidas no respectivo domínio, são solução desta equação para toda a constante \(\text{k$\in$}\mathbb{R}_+\).

A) \(\text{f(x,y,t)=}y^2-t^2\)

B) \(\text{f(x,y,t)=}e^{kt}\cos(3y)\)

C) \(\text{f(x,y,t)=}\log\left(\frac{t^2}{k^2}+y^2\right)\)

D) \(\text{f(x,y,t)=}-\frac{2}{\sqrt{-k^2t^2+x^2+y^2}}\)

E) Nenhuma das anteriores


Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt