Estimativa de \(\beta 1\)

De My Solutions
Revisão em 10h02min de 25 de maio de 2017 por Ist13114 (Discussão | contribs)

Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Introdução à regressão linear simples
  • DESCRICAO: Regressão linear simples - estimativa de mínimos quadrados de \(\beta_1\)
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 5 min
  • TEMPO MAXIMO DE RESOLUCAO: 10 min
  • PALAVRAS CHAVE: regressão linear simples, estimativa de mínimos quadrados de \(\beta_1\)

Num processo de fabrico suspeita-se que o número de artigos defeituosos produzidos por uma máquina \(Y\) dependa da velocidade a que essa mesma máquina está a operar \(x\). % Abaixo encontram-se \(**\) resultados referentes \`a velocidade e ao n\'umero de associado de defeituosos:

\(\pmb{\sum_{i=1}^{**}x_i}\) = *** , \(\pmb{\sum_{i=1}^{**}x_i^2}\) = **** , \(\pmb{\sum_{i=1}^{**}y_i}\) = ***** , \(\pmb{\sum_{i=1}^{**}y_i^2}\) = ****** , \(\pmb{\sum_{i=1}^{**}x_i \, y_i}\) = *******

Admitindo a validade do modelo de regressão linear simples, a estimativa de mínimos quadrados de \(\beta_1\), \(\hat\beta_1\), é igual a:

A) \(2.0110\)

B) \(1.7705\)

C) \(2.2402\)

D) \(2.2884\)


Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt