Diferenças entre edições de "E \(\times\)B drift"

Fonte: My Solutions
Saltar para a navegação Saltar para a pesquisa
(Criou a página com "(D. R. Nicholson ~ 2.3) Consider a particle moving in a time-dependent electric field \(\vec{E} = - \dot{E} t\vec{u}_y\), where \(\dot{E}\) is a constant, and a uniform ma...")
 
 
Linha 1: Linha 1:
(D. R. Nicholson ~ 2.3) Consider a particle moving in a time-dependent electric field
+
(D. R. Nicholson ~ 2.3) Consider a particle moving in a time-dependent electric field \(\vec{E} = - \dot{E} t\vec{u}_y\), where \(\dot{E}\) is a constant, and a uniform magnetic field \(\vec{B}=B_0\vec{u}_z\).
\(\vec{E} = - \dot{E} t\vec{u}_y\), where \(\dot{E}\) is a constant, and  
 
a uniform magnetic field \(\vec{B}=B_0\vec{u}_z\).
 
  
 
(a) Calculate the \(\vec{E}\times\vec{B}\) drift.
 
(a) Calculate the \(\vec{E}\times\vec{B}\) drift.
  
 
(b) Relate the resulting accelerated drift with a force and verify that the drift due to that force is the polarization drift.
 
(b) Relate the resulting accelerated drift with a force and verify that the drift due to that force is the polarization drift.

Edição atual desde as 17h03min de 17 de junho de 2017

(D. R. Nicholson ~ 2.3) Consider a particle moving in a time-dependent electric field \(\vec{E} = - \dot{E} t\vec{u}_y\), where \(\dot{E}\) is a constant, and a uniform magnetic field \(\vec{B}=B_0\vec{u}_z\).

(a) Calculate the \(\vec{E}\times\vec{B}\) drift.

(b) Relate the resulting accelerated drift with a force and verify that the drift due to that force is the polarization drift.