Dimensão de um subespaço de \(R^4\)

De My Solutions
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Álgebra Linear
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Bases e Dimensão
  • DESCRICAO: dimensão de um subespaço de R4
  • DIFICULDADE: **
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE: SEL homogéneo, conjunto solução dum SEL homogéneo, núcleo da matriz dos coeficientes, dimensão dum subespaço de \(R^4\), número de incógnitas livres

Considere o subespaço de \(\mathbb{R}^4 \) definido por \(W=\{(x,y,z,w) \in \mathbb{R}^4: \)\(3\text{w}-2\text{z}\)\(=0 \land \)\(9\text{w}-6\text{z}\)\(=0 \land \)\(16\text{z}-24\text{w}\)\(=0 \land \)\(-4\text{w}-\text{x}-\text{y}-3\text{z}\)\(=0\}\). A dimensão de \(W\) é igual a :

A) \(2\);

B) \(4\);

C) \(1\);

D) \(3\).

Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt