Diferenças entre edições de "Coordenadas polares"

De My Solutions
Ir para: navegação, pesquisa
 
Linha 4: Linha 4:
 
*CONTEXTO : Primeiro ciclo universitário
 
*CONTEXTO : Primeiro ciclo universitário
 
*AREA: Matemática
 
*AREA: Matemática
*DISCIPLINA: Calculo diferencial e integral 2
+
*DISCIPLINA: Calculo Diferencial e Integral 2
 
*ANO: 1
 
*ANO: 1
 
*LINGUA: pt
 
*LINGUA: pt
*AUTOR: Equipa Calculo diferencial e integral 2
+
*AUTOR: Ana Moura Santos e Miguel Dziergwa
*MATERIA PRINCIPAL: Integral duplo
+
*MATERIA PRINCIPAL: Teorema de mudança de variáveis
 
*DESCRICAO:  Integral duplo em coordenadas polares
 
*DESCRICAO:  Integral duplo em coordenadas polares
*DIFICULDADE: easy
+
*DIFICULDADE: ***
 
*TEMPO MEDIO DE RESOLUCAO: 15 mn
 
*TEMPO MEDIO DE RESOLUCAO: 15 mn
 
*TEMPO MAXIMO DE RESOLUCAO: 30 mn
 
*TEMPO MAXIMO DE RESOLUCAO: 30 mn
*PALAVRAS CHAVE:  integral múltiplo, ordem de integração, extremos de integração, coordenadas polares
+
*PALAVRAS CHAVE:  integral duplo, ordem de integração, extremos de integração, coordenadas polares
 
</div>
 
</div>
 
</div>
 
</div>

Edição atual desde as 20h51min de 23 de março de 2018

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Calculo Diferencial e Integral 2
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Teorema de mudança de variáveis
  • DESCRICAO: Integral duplo em coordenadas polares
  • DIFICULDADE: ***
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE: integral duplo, ordem de integração, extremos de integração, coordenadas polares

Sendo f uma função positiva e integrável, a seguinte soma de integrais em coordenadas polares \(\begin{array}{c}\text{}\int_0^1\int_0^{\frac{5\pi}{4}}r\text{f}\left(\begin{array}{c}r\cos(\theta)\\r\sin(\theta)\\\end{array}\right)d\theta dr\\+\int_1^{\sqrt{2}}\int_{\frac{\pi}{4}}^{\frac{5\pi}{4}}r\text{f}\left(\begin{array}{c}r\cos(\theta)\\r\sin(\theta)\\\end{array}\right)d\theta dr\\+\int_{\sqrt{2}}^2\int_{-\arccos\left(-\frac{\sqrt{2}}{r}\right)}^{-\frac{3\pi}{4}}r\text{f}\left(\begin{array}{c}r\cos(\theta)\\r\sin(\theta)\\\end{array}\right)d\theta dr\\\end{array}\) pode também ser dada por:

A)\(\fbox{$\begin{array}{c}\text{}\int_0^1\int_0^{\frac{5\pi}{4}}r\text{f}\left(\begin{array}{c}r\cos(\theta)\\r\sin(\theta)\\\end{array}\right)d\theta dr\\+\int_1^{\sqrt{2}}\int_{\arccos\left(\frac{1}{r}\right)}^{\frac{5\pi}{4}}r\text{f}\left(\begin{array}{c}r\cos(\theta)\\r\sin(\theta)\\\end{array}\right)d\theta dr\\+\int_{\sqrt{2}}^2\int_{-\arccos\left(-\frac{\sqrt{2}}{r}\right)}^{-\frac{3\pi}{4}}r\text{f}\left(\begin{array}{c}r\cos(\theta)\\r\sin(\theta)\\\end{array}\right)d\theta dr\\\end{array}$}\)

B)\(\fbox{$\begin{array}{c}\text{}\int_0^1\int_0^{\frac{5\pi}{4}}r\text{f}\left(\begin{array}{c}r\cos(\theta)\\r\sin(\theta)\\\end{array}\right)d\theta dr\\+\int_1^{\sqrt{2}}\int_{\arccos\left(\frac{1}{r}\right)}^{\frac{5\pi}{4}}r\text{f}\left(\begin{array}{c}r\cos(\theta)\\r\sin(\theta)\\\end{array}\right)d\theta dr\\+\int_{\sqrt{2}}^2\int_{-\arccos\left(-\frac{\sqrt{2}}{r}\right)}^{-\frac{3\pi}{4}}r\text{f}\left(\begin{array}{c}r\cos(\theta)\\r\sin(\theta)\\\end{array}\right)d\theta dr\\\end{array}$}\)

C)\(\fbox{$\begin{array}{c}\text{}\int_0^1\int_0^{\frac{5\pi}{4}}r\text{f}\left(\begin{array}{c}r\cos(\theta)\\r\sin(\theta)\\\end{array}\right)d\theta dr\\+\int_1^{\sqrt{2}}\int_{\arccos\left(\frac{1}{r}\right)}^{\frac{5\pi}{4}}r\text{f}\left(\begin{array}{c}r\cos(\theta)\\r\sin(\theta)\\\end{array}\right)d\theta dr\\+\int_{\sqrt{2}}^2\int_{-\arccos\left(-\frac{\sqrt{2}}{r}\right)}^{-\frac{3\pi}{4}}r\text{f}\left(\begin{array}{c}r\cos(\theta)\\r\sin(\theta)\\\end{array}\right)d\theta dr\\\end{array}$}\)

D)Nenhuma das anteriores

Para obter o zip que contém as instâncias deste exercício clique aqui(coordPolaCartes)

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt