Composição de 3 transformações lineares em \(R^2\)

De My Solutions
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Álgebra Linear
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Transformações Lineares
  • DESCRICAO: Composição de 3 transformações lineares em R2
  • DIFICULDADE: **
  • TEMPO MEDIO DE RESOLUCAO: 10 mn
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE:

Considere a transformação linear que tomando um vector de \( \mathbb{R}^2 \) o reflete relativamente ao eixo dos \(xx\) seguidamente o roda \(\frac{2\pi}{3}\) no sentido contrário ao dos ponteiros do relógio e finalmente o reflete relativamente à recta \(y=x\). Diga qual das seguintes matrizes é a matriz canónica da transformação linear.

A)\(\left(\begin{array}{cc}\frac{\sqrt{3}}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{\sqrt{3}}{2}\\\end{array}\right)\), B)\(\left(\begin{array}{cc}-\frac{\sqrt{3}}{2}&\frac{1}{2}\\-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\\end{array}\right)\), C)\(\left(\begin{array}{cc}-\frac{\sqrt{3}}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{\sqrt{3}}{2}\\\end{array}\right)\), D)\(\left(\begin{array}{cc}\frac{\sqrt{3}}{2}-1&\frac{1}{2}\\-\frac{1}{2}&\frac{\sqrt{3}}{2}-1\\\end{array}\right)\)


Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt