Campo gradiente

De My Solutions
Revisão em 11h57min de 29 de agosto de 2016 por Ist178052 (Discussão | contribs)

Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Calculo diferencial e integral 2
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Equipa Calculo diferencial e integral 2
  • MATERIA PRINCIPAL:
  • DESCRICAO:
  • DIFICULDADE: easy
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE:

Considere os campos vetoriais cujas expressões são dadas respectivamente por:\(\overset{\to}{\pmb{\text{F}}}\left(\begin{array}{c}x\\y\\\end{array}\right)=\left(\begin{array}{c}\frac{\text{x}}{\text{x}^2+\text{y}^2-1}\\\frac{-\text{y}}{\text{x}^2+\text{y}^2-1}\\\end{array}\right)\) e \(\overset{\to}{\pmb{\text{G}}}\left(\begin{array}{c}x\\y\\z\\\end{array}\right)=\left(\begin{array}{c}\frac{\text{x}}{\text{x}^2+\text{z}^2}\\\text{y}\\\frac{\text{z}}{\text{x}^2+\text{z}^2}\\\end{array}\right)\). Então:

A)Para qualquer curva C no domínio de \(\overset{\to}{\pmb{\text{F}}}\), \(\int_{\text{C}}\text{W}_{\overset{\to}{\pmb{\text{F}}}}\) só depende de \(\overset{\to}{\pmb{\text{F}}}\) no ponto inicial e no ponto final

B)Para qualquer curva C em \(\{\left(\begin{array}{c}x\\y\\\end{array}\right)\in\mathbb{R}^2\text{:}\text{x}>0\}\), \(\int_{\text{C}}\text{W}_{\overset{\to}{\pmb{\text{F}}}}\) só depende de \(\overset{\to}{\pmb{\text{F}}}\) no ponto inicial e no ponto final

C)Para qualquer curva C no domínio de \(\overset{\to}{\pmb{\text{G}}}\), \(\int_{\text{C}}\text{W}_{\overset{\to}{\pmb{\text{G}}}}\) só depende de \(\overset{\to}{\pmb{\text{G}}}\) no ponto inicial e no ponto final

D)Para qualquer curva C em \(\mathbb{R}^3\), \(\int_{\text{C}}\text{W}_{\overset{\to}{\pmb{\text{G}}}}\) só depende de \(\overset{\to}{\pmb{\text{G}}}\) no ponto inicial e no ponto final

E)Nenhuma das anteriores

Para obter o zip que contém as instâncias deste exercício clique aqui(campoGradienteIntCurva)

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt