Campo gradiente

De My Solutions
Revisão em 10h05min de 29 de agosto de 2016 por Ist178052 (Discussão | contribs) (Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...")

(dif) ← Revisão anterior | Revisão atual (dif) | Revisão seguinte → (dif)
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Calculo diferencial e integral 2
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Equipa Calculo diferencial e integral 2
  • MATERIA PRINCIPAL:
  • DESCRICAO:
  • DIFICULDADE: easy
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE:

Considere os campos vetoriais cujas expressões são dadas respectivamente por:\(\overset{\to}{\pmb{\text{F}}}\left(\begin{array}{c}x\\y\\\end{array}\right)=\left(\begin{array}{c}\frac{\text{x}}{\text{x}^2+\text{y}^2-1}\\\frac{-\text{y}}{\text{x}^2+\text{y}^2-1}\\\end{array}\right)\) e \(\overset{\to}{\pmb{\text{G}}}\left(\begin{array}{c}x\\y\\z\\\end{array}\right)=\left(\begin{array}{c}\text{z}+2\text{y}\\2\text{x}-\text{z}\\\text{x}-\text{y}\\\end{array}\right)\). Então:

A)\(\overset{\to}{\pmb{\text{F}}}\) não é um campo gradiente em \(\{\left(\begin{array}{c}x\\y\\\end{array}\right)\in\mathbb{R}^2\text{:}\text{x}^2+\text{y}^2\neq1\}\)

B)\(\overset{\to}{\pmb{\text{F}}}\) não é um campo gradiente em \(\{\left(\begin{array}{c}x\\y\\\end{array}\right)\in\mathbb{R}^2\text{:}\text{x}^2+\text{y}^2\neq1\}\)

C)Para qualquer curva C em \(\mathbb{R}^3\), \(\int_{\text{C}}\text{W}_{\overset{\to}{\pmb{\text{G}}}}\) só depende de \(\overset{\to}{\pmb{\text{G}}}\) no ponto inicial e no ponto final

D)\(\overset{\to}{\pmb{\text{G}}}\) é um campo gradiente em \(\mathbb{R}^3\)

E)Nenhuma das anteriores

Para obter o zip que contém as instâncias deste exercício clique aqui(campoGradienteIntCurva)

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt