Campo

De My Solutions
Revisão em 09h04min de 29 de agosto de 2016 por Ist178052 (Discussão | contribs) (Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...")

(dif) ← Revisão anterior | Revisão atual (dif) | Revisão seguinte → (dif)
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Calculo diferencial e integral 2
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Equipa Calculo diferencial e integral 2
  • MATERIA PRINCIPAL:
  • DESCRICAO:
  • DIFICULDADE: easy
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE:

Na figura está representado o gráfico duma função escalar nas variáveis \(x\) e \(y\), para \( -2 \leq x \leq 2\) e \(-2 \leq y \leq 2\).

Sabendo que o comprimento de cada seta com origem no ponto \(\left(\begin{array}{c}x\\y\\\end{array}\right)\) é proporcional à norma do vetor gradiente nesse ponto, indique qual poderá ser a figura que corresponde ao campo gradiente da função, isto é\(\begin{array}{cccc}\text{$\nabla$f:}&\mathbb{R}^2&\to&\mathbb{R}^2\\\text{}&\left(\begin{array}{c}x\\y\\\end{array}\right)&|\rightarrow&\left(\begin{array}{c}\frac{\text{$\partial$f}}{\text{$\partial$x}}\\\frac{\text{$\partial$f}}{\text{$\partial$y}}\\\end{array}\right)\\\end{array}\)

Para obter o zip que contém as instâncias deste exercício clique aqui(campo)

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt