Diferenças entre edições de "Campo"

De My Solutions
Ir para: navegação, pesquisa
(Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...")
 
 
(Há 3 revisões intermédias de 2 utilizadores que não estão a ser apresentadas)
Linha 4: Linha 4:
 
*CONTEXTO : Primeiro ciclo universitário
 
*CONTEXTO : Primeiro ciclo universitário
 
*AREA: Matemática
 
*AREA: Matemática
*DISCIPLINA: Calculo diferencial e integral 2
+
*DISCIPLINA: Calculo Diferencial e Integral 2
 
*ANO: 1
 
*ANO: 1
 
*LINGUA: pt
 
*LINGUA: pt
*AUTOR: Equipa Calculo diferencial e integral 2
+
*AUTOR: Ana Moura Santos e Miguel Dziergwa
*MATERIA PRINCIPAL:  
+
*MATERIA PRINCIPAL: Campos gradientes e potenciais escalares
*DESCRICAO:  
+
*DESCRICAO: Identificação gráfica do campo gradiente
*DIFICULDADE: easy
+
*DIFICULDADE: **
 
*TEMPO MEDIO DE RESOLUCAO: 15 mn
 
*TEMPO MEDIO DE RESOLUCAO: 15 mn
*TEMPO MAXIMO DE RESOLUCAO: 30 mn
+
*TEMPO MAXIMO DE RESOLUCAO: 20 mn
*PALAVRAS CHAVE:  
+
*PALAVRAS CHAVE: campo vetorial, representação gráfica do campo gradiente
 
</div>
 
</div>
 
</div>
 
</div>
  
 
Na figura está representado o gráfico duma função escalar nas variáveis \(x\) e \(y\), para \( -2 \leq x \leq 2\) e \(-2 \leq y \leq 2\).
 
Na figura está representado o gráfico duma função escalar nas variáveis \(x\) e \(y\), para \( -2 \leq x \leq 2\) e \(-2 \leq y \leq 2\).
 +
 +
[[File:CampoEnun.gif]]
  
 
Sabendo que o comprimento de cada seta com origem no ponto \(\left(\begin{array}{c}x\\y\\\end{array}\right)\) é proporcional à norma do vetor gradiente nesse ponto, indique qual poderá ser a figura que corresponde ao campo gradiente da função, isto é\(\begin{array}{cccc}\text{$\nabla$f:}&#038;\mathbb{R}^2&#038;\to&#038;\mathbb{R}^2\\\text{}&#038;\left(\begin{array}{c}x\\y\\\end{array}\right)&#038;|\rightarrow&#038;\left(\begin{array}{c}\frac{\text{$\partial$f}}{\text{$\partial$x}}\\\frac{\text{$\partial$f}}{\text{$\partial$y}}\\\end{array}\right)\\\end{array}\)
 
Sabendo que o comprimento de cada seta com origem no ponto \(\left(\begin{array}{c}x\\y\\\end{array}\right)\) é proporcional à norma do vetor gradiente nesse ponto, indique qual poderá ser a figura que corresponde ao campo gradiente da função, isto é\(\begin{array}{cccc}\text{$\nabla$f:}&#038;\mathbb{R}^2&#038;\to&#038;\mathbb{R}^2\\\text{}&#038;\left(\begin{array}{c}x\\y\\\end{array}\right)&#038;|\rightarrow&#038;\left(\begin{array}{c}\frac{\text{$\partial$f}}{\text{$\partial$x}}\\\frac{\text{$\partial$f}}{\text{$\partial$y}}\\\end{array}\right)\\\end{array}\)
 +
 +
[[File:CampoRespostas.gif]]
 +
 +
A) \(4\)
 +
 +
B) \(1\)
 +
 +
C) \(2\)
 +
 +
D) \(3\)
 +
  
 
Para obter o zip que contém as instâncias deste exercício clique aqui(campo)
 
Para obter o zip que contém as instâncias deste exercício clique aqui(campo)
  
 
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt
 
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt

Edição atual desde as 13h42min de 26 de março de 2018

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Calculo Diferencial e Integral 2
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Campos gradientes e potenciais escalares
  • DESCRICAO: Identificação gráfica do campo gradiente
  • DIFICULDADE: **
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 20 mn
  • PALAVRAS CHAVE: campo vetorial, representação gráfica do campo gradiente

Na figura está representado o gráfico duma função escalar nas variáveis \(x\) e \(y\), para \( -2 \leq x \leq 2\) e \(-2 \leq y \leq 2\).

CampoEnun.gif

Sabendo que o comprimento de cada seta com origem no ponto \(\left(\begin{array}{c}x\\y\\\end{array}\right)\) é proporcional à norma do vetor gradiente nesse ponto, indique qual poderá ser a figura que corresponde ao campo gradiente da função, isto é\(\begin{array}{cccc}\text{$\nabla$f:}&\mathbb{R}^2&\to&\mathbb{R}^2\\\text{}&\left(\begin{array}{c}x\\y\\\end{array}\right)&|\rightarrow&\left(\begin{array}{c}\frac{\text{$\partial$f}}{\text{$\partial$x}}\\\frac{\text{$\partial$f}}{\text{$\partial$y}}\\\end{array}\right)\\\end{array}\)

CampoRespostas.gif

A) \(4\)

B) \(1\)

C) \(2\)

D) \(3\)


Para obter o zip que contém as instâncias deste exercício clique aqui(campo)

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt