Cálculo de Laplaciano vetorial

De My Solutions
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Calculo Diferencial e Integral 2
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Campos gradientes e potenciais escalares
  • DESCRICAO: Cálculo de Laplaciano vetorial
  • DIFICULDADE: ***
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE: campo vetorial, funções coordenadas, laplaciano vetorial

Seja \(F: \mathbb{R^3} \to \mathbb{R^3}\) uma função de classe \(C^2\) tal que a função coordenada \(\text{rot}\pmb{\text{F}}=\left(\begin{array}{c}0\\-\text{z}\\-\text{e}^{\text{x}}\\\end{array}\right)\),\(\text{F}_2=\text{y}^2\) e a função coordenada \(F_3\) não depende de y. Então o Laplaciano de \(F\):

A) é dado por \(\left(\begin{array}{c}-\frac{2\text{x}^2-2}{\left(\text{x}^2+1\right)^2}\\0\\0\\\end{array}\right)\)

B) é dado por \(\left(\begin{array}{c}0\\2\\0\\\end{array}\right)\)

C) é dado por \(\left(\begin{array}{c}\text{y}\text{e}^{\text{x}}\\2\\0\\\end{array}\right)\)

D) não pode ser determinado com os dados apresentados

E) Nenhuma das anteriores

Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt