Cálculo de Erro Quadrático Médio

De My Solutions
Revisão em 10h22min de 5 de julho de 2016 por Ist178052 (Discussão | contribs) (Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...")

(dif) ← Revisão anterior | Revisão atual (dif) | Revisão seguinte → (dif)
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Amostragem e estimação pontual
  • DESCRICAO: Probabilidades I
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 5 min
  • TEMPO MAXIMO DE RESOLUCAO: 10 min
  • PALAVRAS CHAVE: estimativa estimador máxima verosimilhança geométrica amostragem estimação pontual erro quadrático médio

Da análise da sua carteira de empréstimos a particulares com algum incumprimento de pagamento, uma instituição bancária concluiu que o número de meses que decorre até ao primeiro incumprimento de pagamento é modelado pela variável aleatória \(X\) com distribuição geométrica de parâmetro \(p\), com \(p\) entre 0 e 1. Considere que (X1,...,Xn), \(n>=3\) é uma amostra aleatória de \(X\). Determine o erro quadrático médio do estimador \(\pmb{\frac{\sum_{i=1}^4ix_i}{\text{somXi}}}\)


A resposta correcta é: A)\(0.6187\) , B)\(0.8268\) , C)\(0.7100\) , D)\(0.4299\)


Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt