Diferenças entre edições de "Aplicação do Teorema do Limite Central"

De My Solutions
Ir para: navegação, pesquisa
Linha 18: Linha 18:
 
O tempo de atendimento num balcão de informações, em minutos, é uma variável aleatória \(X\) com a seguinte função densidade de probabilidade:\(f_X(x)=\)\(\frac{2x}{15}\) com \(x\) compreendido entre \(1\) e \(4\) e zero caso contrário.
 
O tempo de atendimento num balcão de informações, em minutos, é uma variável aleatória \(X\) com a seguinte função densidade de probabilidade:\(f_X(x)=\)\(\frac{2x}{15}\) com \(x\) compreendido entre \(1\) e \(4\) e zero caso contrário.
  
Seja (X_1,X_2, ...,X_100) um vetor de variáveis aleatórias independentes e com a mesma distribuição que \(X\). Calcule a probabilidade da média aritmética dessas 100 variáveis exceder \(1.9\) minutos.
+
Seja (X1,X2, ...,X100) um vetor de variáveis aleatórias independentes e com a mesma distribuição que \(X\). Calcule a probabilidade da média aritmética dessas 100 variáveis exceder \(1.9\) minutos.
  
 
A resposta correcta é: A)\(0.913659\) , B)\(0.086341\) , C)\(0.0913659\) , D)\(0.09137\)
 
A resposta correcta é: A)\(0.913659\) , B)\(0.086341\) , C)\(0.0913659\) , D)\(0.09137\)

Revisão das 10h05min de 1 de julho de 2016

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Distribuições conjuntas e complementos
  • DESCRICAO: Probabilidades I
  • DIFICULDADE: Easy
  • TEMPO MEDIO DE RESOLUCAO: 10 min
  • TEMPO MAXIMO DE RESOLUCAO: 15 min
  • PALAVRAS CHAVE: variáveis aleatórias contínuas distribuição uniforme continua teorema limite central

O tempo de atendimento num balcão de informações, em minutos, é uma variável aleatória \(X\) com a seguinte função densidade de probabilidade:\(f_X(x)=\)\(\frac{2x}{15}\) com \(x\) compreendido entre \(1\) e \(4\) e zero caso contrário.

Seja (X1,X2, ...,X100) um vetor de variáveis aleatórias independentes e com a mesma distribuição que \(X\). Calcule a probabilidade da média aritmética dessas 100 variáveis exceder \(1.9\) minutos.

A resposta correcta é: A)\(0.913659\) , B)\(0.086341\) , C)\(0.0913659\) , D)\(0.09137\)


Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt