Aplicação do MEG com números complexos

De My Solutions
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Álgebra Linear
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Equipa Álgebra Linear
  • MATERIA PRINCIPAL:
  • DESCRICAO:
  • DIFICULDADE:
  • TEMPO MEDIO DE RESOLUCAO:
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE:

Aplicando o método de eliminação de Gauss sem troca de linhas, reduza a matriz \(\left(\begin{array}{cccc}1+i&2+2i&-2-2i&0\\2+2i&1+i&-2-2i&1+i\\1+i&0&2+2i&2+2i\\\end{array}\right)\), com entradas complexas, a uma matriz de escada de linhas onde 1 é a primeira entrada não nula de cada linha. Qual a matriz que obtém?

A)\(\left(\begin{array}{cccc}1&0&0&1\\0&1&0&0\\0&0&1&\frac{1}{2}\\\end{array}\right)\)

B)\(\left(\begin{array}{cccc}1&0&0&\frac{34}{25}-\frac{12i}{25}\\0&1&0&-\frac{9}{25}+\frac{12i}{25}\\0&0&1&\frac{8}{25}+\frac{6i}{25}\\\end{array}\right)\)

C)\(\left(\begin{array}{cccc}1&0&0&1\\0&1&0&1\\0&0&1&\frac{3}{2}\\\end{array}\right)\)

D)\(\left(\begin{array}{cccc}1&0&0&\frac{9}{5}+\frac{2i}{5}\\0&1&0&-\frac{4}{5}+\frac{3i}{5}\\0&0&1&\frac{1}{10}+\frac{4i}{5}\\\end{array}\right)\)

Para obter o zip que contém as instâncias deste exercício clique aqui(MEGC)

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt