Área de um triângulo 3D

De My Solutions
Ir para: navegação, pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Calculo Diferencial e Integral 2
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Integrais de superfície: integrais de campos escalares e fluxos de campos vetoriais
  • DESCRICAO: Área de um triângulo 3D
  • DIFICULDADE: **
  • TEMPO MEDIO DE RESOLUCAO: 10 mn
  • TEMPO MAXIMO DE RESOLUCAO: 15 mn
  • PALAVRAS CHAVE: parametrização do triângulo, integral de superfície

Considere o triângulo de vértices \(\left(\begin{array}{c}3\\3\\0\\\end{array}\right)\),\(\left(\begin{array}{c}0\\-1\\3\\\end{array}\right)\) e \(\left(\begin{array}{c}-1\\-3\\1\\\end{array}\right)\). A sua área é igual a:

A) \(\frac{\sqrt{281}}{2}\)

B) \(\sqrt{281}\)

C) \(0\)

D) \(\frac{39}{2}\)

Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt