

Gestão de Memória

Parte II - Algoritmos

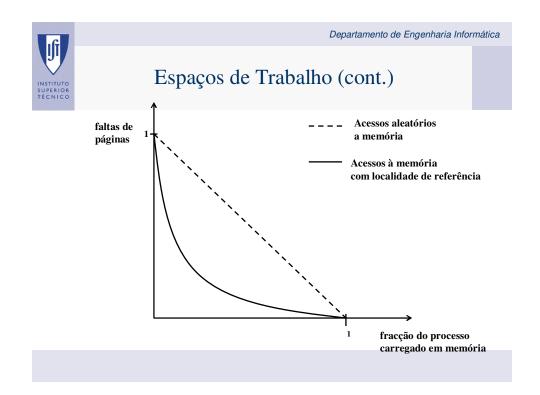
Departamento de Engenharia Informática

Algoritmos de Gestão de Memória

- Tipos de decisões que o sistema operativo tem de tomar em relação à memória principal:
 - Transferência: quando transferir um bloco de memória secundária para memória primária e vice-versa?
 - Reserva: onde colocar um bloco de informação?
 - Substituição: quando não existe mais memória livre, qual o bloco a retirar da memória principal para satisfazer um pedido?

Algoritmos de Transferência

Departamento de Engenharia Informática


Algoritmos de Transferência

- Existem três situações em que a transferência pode ser feita:
 - a pedido (*on request*): o programa ou o sistema operativo determinam quando se deve carregar o bloco em memória principal
 - · normalmente usado na memória segmentada
 - por necessidade (*on demand*): o bloco é acedido e gera-se uma falta (de segmento ou de página), sendo necessário carregá-lo para a memória principal
 - normalmente usado na memória paginada
 - por antecipação (*prefetching*): o bloco é carregado na memória principal pelo sistema operativo porque este considera fortemente provável que ele venha a ser acedido nos próximos instantes

Espaços de Trabalho (working sets)

- Espaço de trabalho (*working set*) de um processo num determinado intervalo de tempo é o conjunto de páginas acedidas pelo processo nesse intervalo de tempo:
 - verifica-se que, para intervalos de tempo razoáveis, o espaço de trabalho de um processo mantém-se constante e menor que o seu espaço de endereçamento
- Certos algoritmos esperam até que haja espaço suficiente para o working set de um processo para o colocar em memória (e em execução)
 - O que acontece se a estimativa for muito baixa?
 E se for muito alta?

Algoritmos de Reserva

Departamento de Engenharia Informática

Reserva de Memória

• Paginação

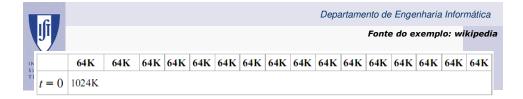
- Muito simples basta encontrar uma página livre, normalmente existentes numa Lista de Páginas Livres do sistema operativo
- Segmentação
 - O tamanho variável dos segmentos torna mais complexa a reserva de espaço para um segmento
 - Na libertação de memória é necessário recompactar os segmentos

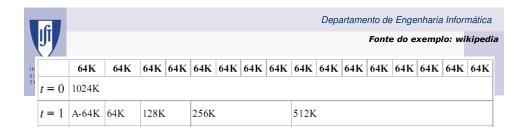
Reserva de Segmentos: Critérios de Escolha de Blocos Livres

- Best-fit (o menor possível):
 - gera elevado número de pequenos fragmentos
 - em média percorre-se metade da lista de blocos livres na procura
 - a lista tem de ser percorrida outra vez para introduzir o fragmento
- Worst-fit (o maior possível):
 - pode facilmente impossibilitar a reserva de blocos de grandes dimensões
 - a lista de blocos livres tem de ser percorrida para introduzir o fragmento
- First-fit (o primeiro possível):
 - minimiza a tempo gasto a percorrer a lista de blocos livres
 - gera muita fragmentação externa
 - acumula muitos blocos pequenos no início da lista, ficando para o fim os blocos maiores
- Next-fit (o primeiro possível a seguir ao anterior):
 - espalha os blocos pequenos por toda a memória

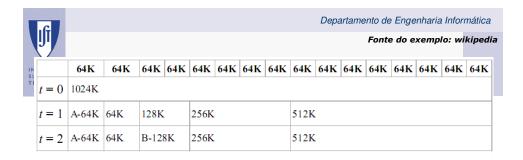
Departamento de Engenharia Informática

Critérios de Escolha de Blocos Livres (cont.)

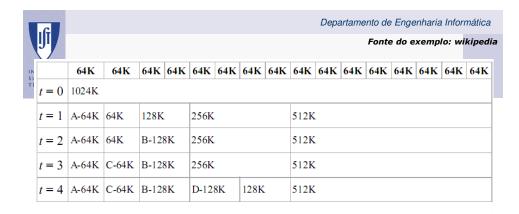

- dimensão do pedido: 15k
 - − best-fit − ?
 - worst-fit − ?
 - first-fit ?



Critérios de Escolha de Blocos Livres: Algoritmo Buddy

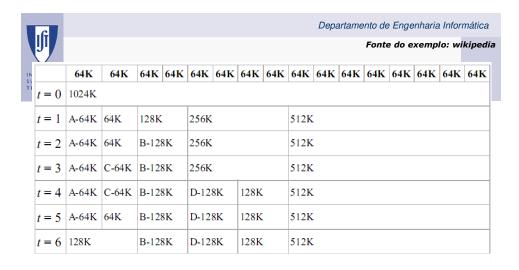

- A memória livre é dividida em blocos de dimensão bⁿ
- Se b = 2 então designa-se por *buddy* binário
- Para satisfazer um pedido de dimensão D percorre-se a lista à procura de um bloco de dimensão 2^k tal que $2^{k-1} < D \le 2^k$
- Se não for encontrado procura-se um de dimensão 2^{k+i}, i >0, que será dividido em duas partes iguais (buddies)
- Um dos buddies será subdividido quantas vezes for necesssário até se obter um bloco de dimensão 2^k
- Se possível, na libertação um bloco é recombinado com o seu buddy, sendo a associação entre buddies repetida até se obter um bloco com a maior dimensão possível
- Consegue-se um bom equilíbrio entre o tempo de procura e a fragmentação interna e externa

Processo A pede segmento de 34KB.


Processo B pede segmento de 66KB.

Processo C pede segmento de 35KB.

	.c										Depa	artame	ento de	Enge	nharia	Infori	mática
		Fonte do exemplo: w															kipedia
IN St		64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K
TI	t = 0	1024K															
	t = 1	A-64K	64K	128K		256K 256K 256K				512K							
	t = 2	A-64K	64K	B-12	8K					512K							
	t = 3	A-64K	C-64K	B-12	8K					512K							


Processo D pede segmento de 67KB.

Processo C liberta o seu segmento.

T.G.												Departamento de Engenharia Informática									
Fonte do exe														хетр	lo: wi	kipedia					
IN SU TI		64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K				
Ti	t = 0	1024K																			
	<i>t</i> = 1	A-64K	64K	128K		256K 256K				512K 512K											
	<i>t</i> = 2	A-64K	64K	B-128	8K																
	<i>t</i> = 3	A-64K	C-64K	B-128	8K	256K				512K											
	t = 4	A-64K	C-64K	B-128	B-128K		D-128K 128K			512K											
	<i>t</i> = 5	A-64K	64K	B-128	8K	D-128K 128K				512K											

Processo A liberta o seu segmento.

Processo B liberta o seu segmento.

.c										Depa	artame	ento de	e Enge	enharia	a Infori	mática		
												Fonte	e do e	xemp	lo: wi	kipedia		
	6417	6417	64V	64V	6AV	64V	64V	6 AV	6AV	64V	64V	64V	64V	6412	6AV	64V		
	04K	04K	04K	04K	04K	04K	04K	04K	04K	04K	04K	04K	04K	04K	04K	04K		
t = 0	1024K																	
<i>t</i> = 1	A-64K	64K	128K		256K				512K									
<i>t</i> = 2	A-64K	64K	B-128	8K	256K				512K									
<i>t</i> = 3	A-64K	C-64K	B-12	8K	256K				512K									
t = 4	A-64K	C-64K	B-12	8K	D-128K		128K		512K									
t = 5	A-64K	64K	B-12	8K	D-128K 128		128K		512K									
<i>t</i> = 6	128K		B-12	8K	D-128K 128K				512K									
t = 7	256K				D-12	8K	128K		512K									
	t = 1 $t = 2$ $t = 3$ $t = 4$ $t = 5$ $t = 6$	t = 1 A-64K t = 2 A-64K t = 3 A-64K t = 4 A-64K t = 4 A-64K t = 5 A-64K t = 6 128K	t = 0 1024K t = 1 A-64K 64K t = 2 A-64K 64K t = 3 A-64K C-64K t = 4 A-64K C-64K t = 5 A-64K 64K t = 6 128K	t = 0 1024K $t = 1 A-64K 64K 128K$ $t = 2 A-64K 64K B-12t$ $t = 3 A-64K C-64K B-12t$ $t = 4 A-64K C-64K B-12t$ $t = 5 A-64K 64K B-12t$ $t = 6 128K B-12t$	t = 0 1024K t = 1 A-64K 64K 128K t = 2 A-64K 64K B-128K t = 3 A-64K C-64K B-128K t = 4 A-64K C-64K B-128K t = 5 A-64K 64K B-128K t = 6 128K B-128K	t = 0 1024K t = 1 A-64K 64K 128K 256K t = 2 A-64K 64K B-128K 256K t = 3 A-64K C-64K B-128K 256K t = 4 A-64K C-64K B-128K D-128 t = 5 A-64K 64K B-128K D-128 t = 6 128K B-128K D-128	t = 0 1024K t = 1 A-64K 64K 128K 256K t = 2 A-64K 64K B-128K 256K t = 3 A-64K C-64K B-128K 256K t = 4 A-64K C-64K B-128K D-128K t = 5 A-64K 64K B-128K D-128K t = 6 128K B-128K D-128K	t = 0 1024K $t = 1$ A-64K 64K 128K 256K $t = 2$ A-64K 64K B-128K 256K $t = 3$ A-64K C-64K B-128K 256K $t = 4$ A-64K C-64K B-128K D-128K 128K $t = 5$ A-64K 64K B-128K D-128K 128K $t = 6$ 128K B-128K D-128K 128K	t = 0 1024K t = 1 A-64K 64K 128K 256K t = 2 A-64K 64K B-128K 256K t = 3 A-64K C-64K B-128K 256K t = 4 A-64K C-64K B-128K D-128K 128K t = 5 A-64K 64K B-128K D-128K 128K t = 6 128K B-128K D-128K 128K	t = 0 1024K $t = 1$ A-64K 64K 128K 256K 512K $t = 2$ A-64K 64K B-128K 256K 512K $t = 3$ A-64K C-64K B-128K 256K 512K $t = 4$ A-64K C-64K B-128K D-128K 128K 512K $t = 5$ A-64K 64K B-128K D-128K 128K 512K $t = 6$ 128K B-128K D-128K 128K 512K	64K	64K	Fonts 64K 64K	Fonte do e 64K	Fonte do exemp 64K 64K	t = 0 1024K $t = 1$ A-64K 64K 128K 256K 512K $t = 2$ A-64K 64K B-128K 256K 512K $t = 3$ A-64K C-64K B-128K 256K 512K $t = 4$ A-64K C-64K B-128K D-128K 128K 512K $t = 5$ A-64K 64K B-128K D-128K 128K 512K $t = 6$ 128K B-128K D-128K 128K 512K		

Processo D liberta o seu segmento.

	.c										Depa	artame	ento de	Enge	nharia	Infori	mática		
X	IJ.												Fonte	do e	xemp	lo: wi	kipedia		
IN SU TI		64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K	64K		
TI	t = 0	1024K																	
	<i>t</i> = 1	A-64K	64K	128K		256K				512K									
	t = 2	A-64K	64K	B-12	8K	256K				512K									
	t = 3	A-64K	C-64K	B-12	8K	256K				512K									
	t = 4	A-64K	C-64K	B-12	8K	D-12	8K	128K		512K									
	t = 5	A-64K	64K	B-128K		D-12	8K	128K		512K									
	<i>t</i> = 6	128K		B-128K			8K	128K		512K									
	t = 7	256K				D-128K 128K				512K									
	t = 8	1024K																	

Algoritmo de Buddy: conclusões

• Complexidade?

- Reservar e libertar segmentos cresce logaritmicamente com o número de subdivisões de segmentos suportadas
- e.g. 1MB até 64KB: 4 subdivisões

• Fragmentação externa?

 Sim (como todos os algoritmos de reserva para segmentação)

• Fragmentação interna?

- Sim! (ao contrário dos algoritmos anteriores)

Departamento de Engenharia Informática

Algoritmos de Substituição

Swapping / Paging

- Quando é necessário libertar espaço na memória física, o SO copia páginas para disco
 - Escolhe aquelas que previsivelmente não irão ser usadas brevemente
 - Zona do disco que as contém "swap area"
- Granularidade?
 - todas as páginas do processo (processo swapped out)
 - Terminologia: swapping
 - páginas individuais
 - Terminologia: paging

Departamento de Engenharia Informática

Algoritmos de Substituição de Páginas

- O Algoritmo Óptimo:
 - Retira a página cujo próximo pedido seja mais distante no tempo
 - Requer conhecimento futuro, logo não é viável...

Algoritmos de substituição de Segmentos

- Comum a granularidade ser a do processo inteiro
- Possíveis critérios para decidir qual o processo a transferir para disco?
 - Estado e prioridade do processo: processos bloqueados e pouco prioritários são candidatos preferenciais
 - Tempo de permanência na memória principal: um processo tem que permanecer um determinado tempo a executar-se antes de ser novamente enviado para disco
 - Dimensão do processo

Departamento de Engenharia Informática

Algoritmos de Substituição de Páginas

- menos usada recentemente (*Least Recently Used*, LRU):
 - Eficaz segundo o princípio de localidade de referência
 - Latência associada à sua implementação rigorosa.
 Aproximação:
 - Utilização de um contador por página que indique a que "grupo etário" ela pertence
 - actualizado regularmente pelo processo paginador
 - Quando atingir um valor máximo, a página passa para a lista das livres ou das livres mas modificadas

Algoritmos de Substituição de Páginas

- Não usada recentemente (Not Recently Used, NRU):
 - Agrupamento das páginas em 4 grupos:
 - 0: (R = 0, M = 0) Não referenciada, não modificada
 - 1: (R = 0, M = 1) Não referenciada, modificada
 - 2: (R = 1, M = 0) Referenciada, não modificada
 - 3: (R = 1, M = 1) Referenciada, modificada
 - O processo paginador percorre regularmente as tabelas de páginas e coloca o bit R a 0
 - Libertam-se primeiro as páginas dos grupos de número mais baixo

Departamento de Engenharia Informática

Algoritmos de Substituição de Páginas

• FIFO:

- é muito eficiente mas não atende ao grau de utilização das páginas (apenas ao seu tempo de permanência em memória primária)
- existem variantes desta política que evitam a transferência de páginas antigas mas muito usadas para disco

Comparação: segmentação e paginação (1)

• segmentação:

- vantagens:
 - adapta-se à estrutura lógica dos programas
 - permite a realização de sistemas simples sobre hardware simples
 - permite realizar eficientemente as operações que agem sobre segmentos inteiros

– desvantagens:

- o programador tem de ter sempre algum conhecimento dos segmentos subjacentes
- os algoritmos tornam-se bastantes complicados em sistema mais sofisticados
- o tempo de transferência de segmentos entre memória principal e disco torna-se incomportável para segmentos muito grandes
- a dimensão máxima dos segmentos é limitada

Departamento de Engenharia Informática

Comparação: segmentação e paginação (2)

• paginação:

- vantagens:
 - o programador não tem que se preocupar com a gestão de memória
 - os algoritmos de reserva, substituição e transferência são mais simples e eficientes
 - o tempo de leitura de uma página de disco é razoavelmente pequeno
 - a dimensão dos programas é virtualmente ilimitada

- desvantagens:

- o hardware é mais complexo que o de memória segmentada
- operações sobre segmentos lógicos são mais complexos e menos elegantes, pois têm de ser realizadas sobre um conjunto de páginas
- o tratamento das faltas de páginas representa uma sobrecarga adicional de processamento
- Tamanho potencial das tabelas de páginas

UNIX Gestão de Memória

Departamento de Engenharia Informática

Unix - Gestão de Memória

- Unix implementado sobre arquitecturas diferentes
- Dois grupos de implementações:
 - Segmentação com swapping
 - Paginação

Transferência (swapping)

- Arquitecturas segmentadas:
 - Regiões (texto, dados, stack) carregadas contiguamente em memória
 - Transfere para disco processos que estejam bloqueados ou com menor prioridade
- Existem 4 situações que potencialmente provocam a transferência:
 - Chamada fork é preciso espaço para o novo processo
 - Chamada brk expande o segmento de dados do processo
 - Crescimento natural da pilha
 - Sistema operativo precisa de espaço para carregar em memória um processo que estava swapped-out

Departamento de Engenharia Informática

Swapper

- *Swapper*: processo que efectua as transferências de segmentos entre memória principal e secundária
- Área especial do disco reservada para os segmentos retirados de memória

Departamento de Engenharia Informática

Paginação

- Um processo tem inicialmente 3 regiões: código, dados e *stack*
- Cada região tem uma tabela de páginas própria

Departamento de Engenharia Informática

Substituição de Páginas

- Aproximação ao algoritmo Menos Usada Recentemente (LRU)
- Idade da página é mantida na PTE
- *Page-stealer* é acordado quando o número de páginas livres desce abaixo de um dado limite
- Percorre as PTE incrementando o contador de idade das páginas
- Se a página for referenciada a sua idade é anulada
- Se a página atingir uma certa idade marca-a para ser transferida

Departamento de Engenharia Informática

Tabela de Páginas e de Descritores de Blocos de Disco

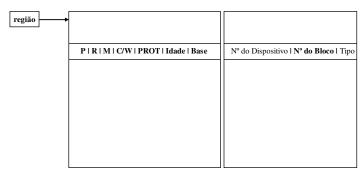
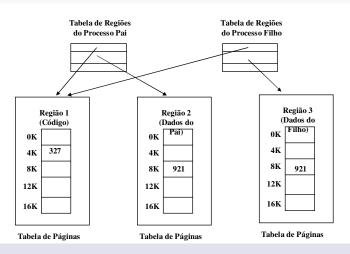


Tabela de Páginas

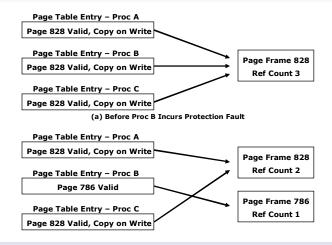
Tabela de Descritores de Blocos de Disco

Departamento de Engenharia Informática

Significado dos campos da tabela de páginas


- P present indica se a pagina está residente na memória primária
- R referenced foi acedida ou referenciada
- M *modified* modificada
- C/W *copy-on-write*
- PROT bits de protecção
- Idade usado pelo algoritmo do page stealer
- Base endereço real do 1º byte da página física
- N° do Dispositivo | N° do Bloco disco e bloco onde se encontra
- Tipo swap, demand fill, demand zero

8/9/2006


fork

Departamento de Engenharia Informática

Tratamento do Copy on Write

