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1 Introduction

In this study variations of Richardson Extrapolation are investigated as a contribution to the establishment of
reliable procedures for verification of numerical CFD simulations. Taylor expansions with fixed exponents up to
three terms and a single-term power series expansion with unknown exponent are tested, and these procedures
are also applied as least square roots approach.
The evaluated forms of Richardson Extrapolation are the ones supposed by Eça and Hoekstra [1],[2]. In the
following I will use their termininology to name these evaluation procedures.

• Method p: One-term Taylor series expansion with

φ0 = φi − α · hp
i (1)

where φ0 is the extrapolated solution. p is the estimated order of convergence, and α is an unknown
parameter. i denotes the index of the grid, where hi is the characteristic grid size and φi is the variable
to be extrapolated.

• Method t1: One-term Taylor series expansion with fixed exponent.

φ0 = φi − α · hpmin

i (2)

pmin is set equal to the lowest order of accuracy of the discretization scheme.

• Method t2: Two-term Taylor series expansion with pmin and pmin + 1.

• Method t3: Three-term Taylor series expansion using pmin, pmin + 1 and pmin + 2.

The fixed exponent methods and their least square root approaches have a straightforward implementation.
Method p can be solved using a false position method and its least square root approach was solved by an
iterative Gauss-Newton method.

The evaluation procedures were applied to an analytical function with artificial scatter in order to observe their
behaviour in a statistical way.

2 An attempt to evaluate the influence of scatter

The least square root approaches were introduced in order to deal with scatter shown in the data. In this
section artificially produced scattered data is presented to apply the evaluation procedures on it. Following
considerations were made to formulate the conditions this data had to fulfill:

• The function shall simulate a grid refinement study in the asymptotic range. Therefore, it shall be
representable by an equation as in the classical sense of a Richardon Extrapolation. In the absence of
scatter it shall have an analytical solution that can be found by all the applied methods.

• The scatter has to be represented by an error function with a defined range of scatter.

• The scatter shall be zero as the grid independent solution is reached and the range of scatter shall grow
as the grid spacing gets coarser.

2.1 Construction of the artificially scattered function

A data set was produced by taking φ(h) = φ0 + a · hp and adding an errorfunction s(h) to it:

φ(h) = φ0 + a · hp + s(h) (3)

The parameters φ0, a and p were chosen as follows:
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φ0 1.0
p 2.0
a 0.5

The errorfunction was constructed as a random function with a Gaussian Distribution of the error s(h) over
φ(h). This was done by adding a finite number of cosine functions with a random phase and a certain amplitude:

s(h) =

N
∑

i=0

√

2S(h,ωi)∆ωi · cos(ωi t + ǫi) (4)

with

S(h,ω) =
c

ω5
· e(−1.25

ω4
m

ω4
) (5)

This error function is similiar to the mathematical representation of a one-dimensional seaway spectrum (John-
swap spectrum) [3]. Now c is to be determined. The aim is to assure that the error s(h) lies within a certain
range:

P (| s(h)

φ(h)
| ≤ 0.001 · φ(h) h2) = 0.997 (6)

In other words, the error should go to zero as the grid spacing reaches zero. At h1 = 1.0 the relative error
should – with a probability of 0.997 – be smaller than 0.001φ(h1) . Speaking of a Gaussian Distribution with

ϕ(x,σ2) =
1√

2πσ2
e(−x2

2σ2 ) (7)

the standard deviation has to equal

σ(h) =
0.001 · φ(h) · h2

3
(8)

to achieve this. (The error band grows with h2, as one could assume, since we use p = 2) On the other hand
there is a relation between the variance σ2 and the spectrum of the amplitudes S(ω) we can use to determine c:

σ2
(h) =

∫

∞

0

S(h,ω)dω (9)

= c(h)

∫

∞

0

ω−5 e(−1.25
ω4

m

ω4
)dω (10)

= c(h)
1

5ω4
m

(11)

⇒ c(h) = σ2
(h) · 5ω4

m (12)

The phases ǫi are chosen by random in the interval [0 .. 2π]. Additionaly every frequency ωi is chosen by random
from the according interval ∆ω.
Now ωm (which is the frequency where S(h, ω) has its maximum) is remaining the parameter to be freely
chosen. In this study I set ωm = 50, so the characteristic amplitudes of the errorfunction have a period of
∆h = 2π

ωm
= 0.126. Figure 1 shows two data sets superposed with errorfunctions that were generated in the

manner described above. φ(h) is made nondimensional by dividing with the exact solution φexact.

In figure 2 20 sets consisting of 5 data points are shown. The grid refinement ratio was set to hi+1/hi =
√

2.
All data sets were obtained in the described manner and thus show an error in each “grid point” which is
very weakly related to the error in every other point. Working with this data, we do not only know the exact
solution, but we also have knowledge of the scatter.

2.2 Application of the evaluation procedures

For testing the evaluating procedures, 30, 000 sets of data points were produced, where each 10, 000 sets had
the exact order pexact = 1.9, 2.0and2.1, respectivly. Density functions for the sets of φ0i

of each evaluating
method, containing 10, 000 values, were generated. The evaluation procedures were applied with the minimum
required grids, i.e. 5 grids for method t3 in the least square roots sense. Method p in the least square root sense
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Figure 1: two errorfunctions as an example
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Figure 2: 20 data sets of five points with grid refinement ratio hi+1

hi
=

√
2; here, only the error in each data

point is shown

was also tested with 5 grids.
The results can be assumed to be gaussian density functions, as one would have expected. In table 2.2 the
obtained averages µfit and standard deviations σfit are listed. µfit and σfit were calculated as

µfit =

n
∑

i=1

φ0i
· 1

n
(13)

σfit =

√

√

√

√

n
∑

i=1

[φ0i
− µfit]2 ·

1

n
(14)

(15)

The smaller σfit, the better can the inspected evaluation method be considered to be able to deal with this
kind of scatter. In figures 4 to 6 the density functions are plotted. (For only 10, 000 extrapolated solutions
were used in this exercise, the plots are not smooth. Anyway, they clearly tend to Gaussian Distributions and
for a growing number of data they will obviously get smoother. In figure 3 the plot showing method t3 with
pmin = pexact is compared to the Gauss function with corresponding µ and σ)

p t1 t1 lsr t2 t2 lsr t3 t3 lsr p p lsr 4gr. p lsr 5gr.
1.9 µ 1.0341 1.0499 1.0167 1.0245 1.0116 1.0169 1.0000 0.9999 0.9998

σ .164E-2 .207E-2 .429E-2 .526E-2 .900E-2 .110E-1 .754E-2 .948E-2 .169E-1
2.0 µ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0001 0.9999 1.0000 0.9997

σ .166E-2 .218E-2 .441E-2 .561E-2 .940E-2 .121E-1 .694E-2 .901E-2 .171E-1
2.1 µ 0.9647 0.9459 0.9854 0.9776 0.9906 0.9857 0.9999 1.0000 0.9997

σ .167E-2 .227E-2 .451E-2 .597E-2 .973E-2 .131E-1 .638E-2 .858E-2 .170E-1

The most important observations can be summarized as followed:

• The least square roots approaches do in general produce results with a greater standard deviation σfit.
For pmin 6= pexact, the least square root approaches of the fixed exponent methods even show less accuracy
in meeting the correct average, which should be µexact = φexact = 1.0.
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Figure 4: pexact = 1.9; distribution function of φ0 for fixed (left) and unknown (right) exponent methods

• With pmin 6= pexact, the fixed exponent approaches using higher order terms obtain the more exact results
than the methods t1 and t1 lsr. Although the former have greater σfit, µfit is calculated closer to the
exact value. Nevertheless, all the fixed exponent methods do not turn out with µfit = φexact unless
pmin = pexact.

• On the other hand, having pmin = pexact, the results of the methods t1 and t1 lsr produce a smaller band
of φ0 than the methods t2 and t3 and their least square approaches.

• The fixed exponent methods seem to show a slightly growing standard deviation σfit as pexact increases.
The methods with unknown exponent exhibit a smaller standard deviation with increasing pexact except
for method p lsr using 5 grids.

• Using 5 grids (one more than the required minimum) for method p lsr does not improve the resulting
standard deviation σfit, furthermore it leads to an even greater standard deviation of the resulting φ0

than the standard deviation σ(h5) which is the greatest occuring in the data.

One explanation for the unexpected bad behaviour of the least square roots approaches is the growing relative
error with increasing h. In this example the least square roots approaches are using one more data point than
the simple approaches. Because of hi+1/hi =

√

(2) and equation 8, the relative standard deviation at hi+1 is
twice the relative standard deviation at hi:

σ(hi+1)

φ(hi+1)
=

0.001 · φ(hi+1) · h2
i+1

3 · φ(hi+1)
(16)

=
0.001 · 2 · h2

i

3
(17)

=
σ(hi)

φ(hi)
(18)

(19)
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Figure 5: pexact = 2.0; distribution function of φ0 for fixed (left) and unknown (right) exponent methods
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Figure 6: pexact = 2.1; distribution function of φ0 for fixed (left) and unknown (right) exponent methods

As we could see in the behaviour of the least square root approach of method p with 5 grids, even bad data at
a coarse grid can affect the curve fitting at h → 0.
Eça and Hoekstra introduced Us as a contribution to the uncertainty which takes into account the possible
existence of scatter in the data and is calculated for the least square root approaches. Us was defined as

Us =

√

∑ng

i=1(φi − (φ0 +
∑nj

j=1 αjh
pj

i ))2

ng − nu

(20)

(21)

In table 2.2 the average Us of the calculations are compared to the standard deviation of the curve fits at h = 0.

p t1 lsr t2 lsr t3 lsr p lsr 4gr. p lsr 5gr.
1.9 Us .849E-2 .251E-2 .251E-2 .197E-2 .605E-2

σ .207E-2 .526E-2 .110E-1 .948E-2 .169E-1
2.0 Us .122E-2 .181E-2 .257E-2 .203E-2 .650E-2

σ .218E-2 .561E-2 .121E-1 .901E-2 .171E-1
2.1 Us .101E-1 .263E-2 .283E-2 .209E-2 .693E-2

σ .227E-2 .597E-2 .131E-1 .858E-2 .170E-1

The Us of the fixed exponent method t1 lsr give a quite good estimation of the uncertainty produced by the
scatter, but only in case pmin 6= pexact. The other evaluation procedures have a great discrepancy between the
predicted uncertainty Us and the actual deviation caused by scatter. Method t3 lsr gives the poorest results.

2.3 Variation of the Standard Deviation

To get an impression of the influence of a growing relative standard deviation on the obtained φ0, σ at h first
was reduced to:

σ(h) =
0.001 · φ(h)

3
(22)
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As a result, the standard deviations at φ0 decrease, and now the least square root approaches provide smaller
bands of extrapolated solutions at h = 0 than their according standard approaches do. (See table 2.3) Method
t1 lsr is able to achieve σfit ≤ σ(h). There are no significant changes in the averages µfit compared to the
former variant of scatter. The uncertainty of the fit calulated by the least square root approaches is also listed.
Here, the Us are greater than σfit in general. Here Us can be regarded being conservative except for method
p lsr with 4 grids, where Us is smaller than σfit. Method t1 lsr obtains very good results.

p t1 t1 lsr t2 t2 lsr t3 t3 lsr p p lsr 4gr. p lsr 5gr.
1.9 µ 1.0341 1.0500 1.0167 1.0246 1.0114 1.0171 0.9999 1.0002 1.0000

σ .120E-2 .776E-3 .238E-2 .135E-2 .395E-2 .208E-2 .379E-2 .211E-2 .170E-2
Us .853E-2 .257E-2 .259E-2 .202E-2 .612E-2

2.0 µ 1.0000 1.0000 1.0000 1.0001 0.9999 1.0002 0.9999 1.0002 1.0000
σ .120E-2 .783E-3 .241E-2 .138E-2 .403E-2 .218E-2 .349E-2 .198E-2 .168E-2
Us .122E-2 .182E-2 .256E-2 .204E-2 .648E-2

2.1 µ 0.9647 0.9459 0.9853 0.9777 0.9904 0.9857 0.9999 1.0002 1.0000
σ .121E-2 .801E-3 .244E-2 .143E-2 .410E-2 .229E-2 .322E-2 .188E-2 .167E-2
Us .101E-1 .264E-2 .282E-2 .209E-2 .691E-2

Additionally table 2.3 presents the results for a linear shape of σ(h). As one would expect, the σfit of the
evaluation preocedures are smaller as for the first introduced kind of scatter and greater than the σfit obtained
with a constant relative standard deviation. Only method p lsr with 5 girds and method t1 lsr with pmin 6= pexact

obtain a Us that is greater than σfit.

p t1 t1 lsr t2 t2 lsr t3 t3 lsr p p lsr 4gr. p lsr 5gr.
1.9 µ 1.0340 1.0500 1.0166 1.0246 1.0113 1.0170 0.9998 1.0001 0.9999

σ .135E-2 .118E-2 .306E-2 .247E-2 .564E-2 .443E-2 .512E-2 .417E-2 .506E-2
Us .849E-2 .253E-2 .253E-2 .199E-2 .602E-2

2.0 µ 1.0000 1.0000 1.0000 1.0001 0.9998 1.0002 0.9999 1.0002 0.9999
σ .136E-2 .120E-2 .312E-2 .259E-2 .579E-2 .474E-2 .470E-2 .395E-2 .499E-2
Us .122E-2 .181E-2 .256E-2 .202E-2 .652E-2

2.1 µ 0.9647 0.9459 0.9853 0.9777 0.9904 0.9858 0.9999 1.0002 0.9999
σ .138E-2 .124E-2 .317E-2 .273E-2 .595E-2 .507E-2 .433E-2 .377E-2 .497E-2
Us .101E-1 .257E-2 .279E-2 .208E-2 .695E-2

2.4 Weighted least square root curve fitting

Returning to the initial calculation, it can be assumed that the wider spreading results of the least square root
methods are due to the growing scatter when h is increased.
To solve this problem, one could apply the least square root regression with a weighting of the data by the
according standard deviation. This was tested for four data sets by performing method p in the standard way
and the least square root sense, where the latter was applied both in the earlier described way and with a data
weighting (figures 7 and 8). The outcoming was not very encouraging, as the weighting of the the data turned
out to be not a real improvement of the estimated solution. In the first two cases, data weighting improved the
outcome of the least square root approach but was farer away from the exact solution at h = 0 than the simple
method p. The examples in figure 8 show that data weighting can even detoriate the results of the least square
root approach. On the other hand, for these four tests, the weighted fit never came up with the worst outcome
of this three approaches. The timeframe for this work did not allow to have a closer look at this task and to
statistically evaluate the data weighting method, but it would be interesting to do this in the future.

3 Conclusions

Using the scattered test function, we had the advantage of knowing the the exact “converging order”. This
implies on the other hand that the fixed order methods were able to produce more correct estimates of φ0 than
they would under realistic conditions where the order of convergence can only be estimated.
On the other hand, the methods with unknown exponent exhibited problems with a growing error as a result of
scatter increasing with the characteristic grid size. As their advantage, they still obtained a quite good estimate
of the order of cenvergence. Figure 9 presents the calculated p obtained with the unknown exponent methods
applied to the data sets with σ(h) = 0.001 · φ(h) · h2, where they performed worst.

6



 0.998

 1

 1.002

 1.004

 1.006

 1.008

 1.01

 0  0.5  1  1.5  2  2.5  3

f /
 f_

ex
ac

t

h

scattered data points
unweighted lsr-fit using 4 data points

weighted lsr-fit using 4 data points
method p using 3 data points

exact solution

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0  0.5  1  1.5  2  2.5  3

f /
 f_

ex
ac

t

h

scattered data points
unweighted lsr-fit using 4 data points

weighted lsr-fit using 4 data points
method p using 3 data points

exact solution

Figure 7: fitted curves obtained by method p, p lsr and weighted lsr
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Figure 8: fitted curves obtained by method p, p lsr and weighted lsr

It might be necessary to have knowledge of the behaviour of the scatter occuring in a grid refinement study
to handle it. Assuming that there might be still scatter existing alltough the grid study is performed in the
asymptotic range, the use of a method using unknown exponents might have disadvantages, at least this is
the result this exercise suggests in case the scatter is increasing with the grid spacing. One could think of
combining both kinds of Richardson Extrapolation. Method p or its least square root derivates could be applied
for estimating the order of convergence and this could be used as the input for a fixed exponent method using
only the finest grids.
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